langchain 캐싱 (1) 썸네일형 리스트형 빠르고 효율적인 LLM 활용법: LangChain에서 지원하는 5가지 캐시 기법 정리 LLM에서 캐싱이 중요한 이유언어 모델을 사용한 애플리케이션에서 동일한 입력에 대해 반복적으로 쿼리가 발생할 때, **캐시(Cache)**는 매우 중요한 역할을 합니다. 캐싱을 통해 불필요한 모델 호출을 줄이고, 시간과 비용을 절약할 수 있습니다. 특히 LLM(Large Language Models)은 호출할 때마다 비용이 발생하고, 복잡한 쿼리일수록 시간이 오래 걸리기 때문에, 캐시를 잘 활용하면 성능 최적화와 비용 절감을 동시에 달성할 수 있습니다.캐시란?**캐시(Cache)**는 반복적인 요청에 대해 같은 결과를 미리 저장해 두었다가 다시 요청이 들어오면 빠르게 제공하는 메커니즘입니다. 캐시는 결과를 미리 저장하여, 다시 계산할 필요 없이 저장된 결과를 즉시 반환할 수 있어, 특히 성능과 효율성이 .. 이전 1 다음