본문 바로가기

FM

(3)
[LLM] 인공지능, 학습되지 않은 지식을 얻는 두 가지 비법: Fine Tuning과 RAG 개 인공지능, 특히 대형 언어 모델(LLM, Large Language Model)은 최근 몇 년 동안 많은 주목을 받고 있습니다. LLM은 방대한 양의 데이터를 학습하여 사람과 유사하게 언어를 이해하고 생성할 수 있습니다. 그러나 이러한 모델이 학습 과정에서 노출되지 않은 새로운 지식을 답변하고 습득할 수 있도록 하는 방법은 무엇일까요? 대표적인 방법으로 Fine Tuning(미세 조정)과 RAG(Retrieval-Augmented Generation)를 들 수 있습니다. 이번 글에서는 이 두 가지 방법을 초보자도 이해할 수 있도록 쉽게 설명하겠습니다.1. Fine Tuning(미세 조정) - LLM을 특정 지식으로 맞춤형 조정**Fine Tuning(미세 조정)**은 이미 학습된 대형 언어 모델을 특정한..
[FMOps] FMOps란 무엇인가? FMOps(Foundation Model Operations)는 파운데이션 모델의 개발, 배포, 유지보수, 모니터링을 효율적으로 관리하는 프레임워크와 프로세스를 의미합니다. 이 용어는 MLOps(Machine Learning Operations)에서 파생되었으며, 특히 대규모 파운데이션 모델의 운영을 최적화하는 데 중점을 둡니다. FMOps는 대규모 모델의 복잡성을 다루고, 이를 실제 환경에서 안정적으로 운영하기 위해 필요한 일련의 활동과 도구를 포함합니다. FMOps의 주요 구성 요소데이터 관리:데이터 수집 및 준비: 파운데이션 모델을 학습시키기 위한 대규모 데이터셋을 수집하고 전처리하는 과정입니다.데이터 버전 관리: 데이터셋의 버전을 관리하여 재현 가능성을 보장합니다.모델 학습 및 재학습:대규모 분산..
[FM] 파운데이션 모델(Foundation Model)이란 무엇인가? 파운데이션 모델(Foundation Model)은 대규모 데이터셋으로 사전 학습된 범용 인공지능 모델을 의미합니다. 이 모델은 다양한 태스크와 도메인에서 광범위하게 적용될 수 있도록 설계되었습니다. 파운데이션 모델의 개념은 최근 몇 년간 AI 연구에서 큰 주목을 받고 있으며, 특히 자연어 처리(NLP), 컴퓨터 비전(CV), 음성 인식 등 여러 분야에서 활용되고 있습니다.파운데이션 모델의 주요 특징대규모 데이터셋과 모델:파운데이션 모델은 방대한 양의 데이터로 사전 학습됩니다. 이 데이터는 다양한 출처에서 수집된 텍스트, 이미지, 오디오 등 여러 유형의 데이터를 포함할 수 있습니다.모델 자체도 대규모로 설계되며, 수억 개에서 수천억 개의 파라미터를 가질 수 있습니다.범용성:이 모델들은 하나의 특정한 작업에..