인공지능 (226) 썸네일형 리스트형 [Tensorflow] 텐서보드 사용하기 현재 딥러닝 라이브러리와 프레임워크는 너무나 많이 존재한다. 그 중 유독 텐서플로를 사용하는 것이 급증한데에는 텐서보드의 역할도 크다고 한다. 딥러닝을 현업에서 활용하다 보면 학습하는데 걸리는 시간이 아주 상당하다. 따라서 모델을 효과적으로 실험하려면 학습 과정을 추적하는 일이 매우 중요해진다. 하지만 학습 과정을 추적하는데에도 별도의 추가 작업이 많이 필요한 실정이다. 이러한 개발자의 어려움을 덜어주고자 텐서플로는 텐서보드라는 도구를 기본적으로 제공하고 있다. 텐서보드는 학습하는 중간중간 손실값이나 정확도 또는 결과물로 나온 이미지나 사운드 파일들을 다양한 방식으로 시각화해 보여준다. 더 놀라운 점은 이러한 도구를 사용하는데 코드 몇줄만 추가하면 된다는 것이다. 1. 데이터를 읽고 필요한 변수를 pla.. [Tensorflow] 학습 모델 저장하고 재사용하기 1. 모델 저장하기에 앞서 파일에 있는 데이터를 가져오는 것부터 알아보자. import tensorflow as tf import numpy as np data = np.loadtxt('file path', delimiter=',',unpack=True,dtype='float32') x_data = np.transpose(data[0:2]) y_data = np.transpose(data[2:]) [참고] numpy 라이브러리의 loadtxt함수를 이용하여 간단히 데이터를 읽어 올 수 있다. loadtxt의 unpack 매개 변수와 transpose함수는 읽어드린 데이터의 행과 열을 뒤바꿔주는 옵션과 함수이다. 특히 딥러닝에서는 다양한 학습 알고리즘을 적용하거나 행렬 연산을 효율적으로 하기 위해 데이터의.. 이전 1 ··· 26 27 28 29 다음