CPT (1) 썸네일형 리스트형 적은 자원으로도 모델의 재학습이 가능하다? Unsloth로 효율적인 CPT 구현하기 머신러닝에서 모델을 업데이트하거나 새로운 도메인의 지식을 추가하기 위해 파인튜닝(fine-tuning) 기법을 많이 사용합니다. 그러나 기존의 파인튜닝 기법들은 많은 자원이 필요하거나 한계가 뚜렷했는데요, 특히 LoRA와 같은 PEFT(Parametric Efficient Fine-Tuning) 기법은 모델의 일부만 학습하기 때문에 자원의 효율성은 좋지만 한계도 명확합니다. 이러한 문제를 해결하기 위해 최근 Unsloth라는 솔루션이 등장했는데, 적은 자원으로도 모델의 성능을 효율적으로 개선할 수 있어 주목받고 있습니다.이번 글에서는 기존 파인튜닝 방식의 한계를 짚어보고, Unsloth가 어떻게 Continued Pre-Training(CPT)을 효율적으로 수행하는지, 실제 예시를 통해 살펴보겠습니다. .. 이전 1 다음